Regulation of pontine neurite morphology by target-derived signals.

نویسندگان

  • Stig K Hansen
  • Moriah L Szpara
  • Tito A Serafini
چکیده

The molecular cues that regulate neurite morphology within the target environment are key to the formation of complex neural circuitry. During development of the ponto-cerebellar projection, pontine fibers sprout and form elaborate arbors within the inner cerebellar layer prior to arrival of their target cells, the cerebellar granule neurons. Here, we describe the biochemical fractionation of two granule neuron-derived factors that stimulate elaboration of pontine neurites. These factors were identified using a dissociated pontine bioassay and biochemically fractionated from granule cell (GC) conditioned medium (GCCM). One of the factors, STIM1, is a protein with a molecular weight greater than 30 kDa that is distinct from known neurotrophins. The other, STIM2, is a small, protease-resistant molecule with an estimated molecular weight below 1 kDa. We show that these factors stimulate pontine neurite elongation both independently and cooperatively and thus may contribute to the formation of elaborate pontine arbors within the cerebellar cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro.

The contributions of cell-cell interactions to the establishment of specific patterns of innervation within target brain regions are not known. To provide an experimental analysis of the regulation of afferent axonal growth, we have developed an in vitro assay system, based on the developing mouse cerebellum, in which afferent axons from a brainstem source of mossy fiber afferents, the basilar ...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Gene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining

Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

A diffusion-based neurite length-sensing mechanism involved in neuronal symmetry breaking

Although there has been significant progress in understanding the molecular signals that change cell morphology, mechanisms that cells use to monitor their size and length to regulate their morphology remain elusive. Previous studies suggest that polarizing cultured hippocampal neurons can sense neurite length, identify the longest neurite, and induce its subsequent outgrowth for axonogenesis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research. Molecular brain research

دوره 124 2  شماره 

صفحات  -

تاریخ انتشار 2004